CROPPING SYSTEMS DEVELOPMENT AS A COMPONENT OF THE FARMING SYSTEM APPROACH IN THE NORTHEAST RAINFED AGRICULTURAL DEVELOPMENT(NERAD) PROJECT : PROGRESS AND LESSONS LEARNED

Iain A. Craig¹

Introduction

NERAD is attempting to develop a farming systems research and extension (FSRE) approach appropriate for agricultural development in Northeast Thailand. It is conducting many, diverse activities which are being implemented by 9 line agencies of the Ministry of Agriculture in 9 Tambons in Northeast Thailand (Table 1).

FSRE has many different meanings to different people but as far as the cropping systems component of NERAD is concerned the major elements of such an approach are in line with those described by Panothai (1984) :

['] Farming Systems Specialist, University of Kentucky Technical Assistance Team, NERAD Project, Northeast Regional Office of Agriculture, Tha Phra, Khon Kaen, Thailand.

*

Table 1

Ψ.

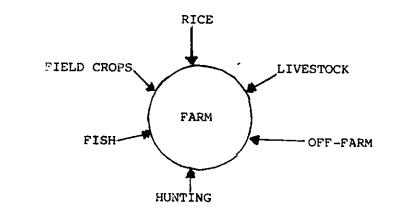
÷

.

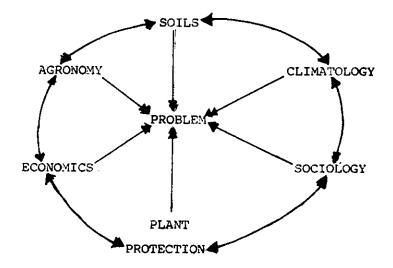
÷

•

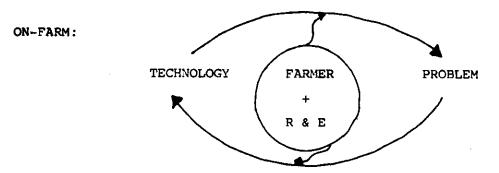
.

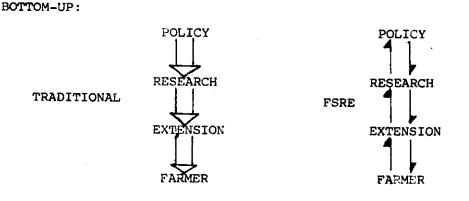

MOAC Department	NERAD Activities
DOA Department of Agiculture	Cropping pattern trials, component technology trials, fruit tree development, sericulture improve- ment, improved rice variety trials
DOME Department of Agricultural Extension	Specialist farmer training, Demonstration field days, Technical support and follow up for project activities
OAE Office of Agicultural Economics	Farm record keeping, mini-evalua- tions, economic analysis of trials
DLD Department of Land Develop- ment	Paddy land shaping, Compost demonstrations, Weather data collection, Swamp rehabilitation, Embankment structures, Submerged dams, Weirs, Shallow wells
CPD Cooperative Promotion Department	Market meetings, market price surveys, group procurement
RFD Royal Forestry Department 371 DOLD Department of Livestock	Village woodlots, pasture improve- ment, watershed management Native chicken improvement, Cattle/ Buffalo improvement, Pasture improvement
, DOF Department of Fisheries	Fish Production improvement, Village aquaculture training, Fish in the paddy

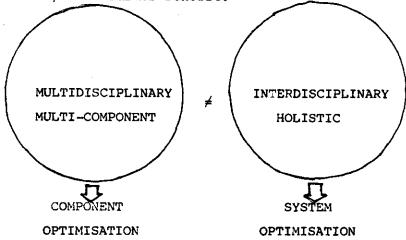
An FSRE approach is an integrated effort by research and extension personnel who should be jointly involved during all phases of the work.

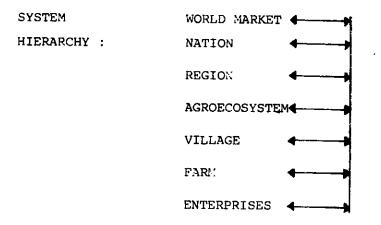


FSRE is an holistic approach which should consider all important interactions within the farm-family system.


HOLISTIC:


FSRE work should be conducted in an interdisciplinary manner that custs across departmental and divisional boundaries. It does not replace specific, single discipline research, however, but should complement it especially in the area of assisting in the definition of research priorities.


* It focuses at the farm level and should include 'on-farm' trials and research, where relevant, to gain a better understanding of real problems and of the performance of new technologies under actual farm conditions. The farmer should be considered a partner in this phase of the research and should be actively involved throughout.


"It has stronger 'bottom-up' orientation than the traditional technology based approach to development and thus requires a greater delegation of responsibility to junior scientists and technicians.

There are also 2 characteristics of NERAD that are sometimes mistakenly interpreted as being part of the FSRE approach. First, NERAD is often viewed as an fSRE project merely because it contains a large number of diverse activities being implemented by personnel from many disciplines. However, unless the different disciplines are interacting and working in an integrated manner in order to ensure that different activities complement and support each other, then the 'systemic properties' cannot be manipulated for optimum farmer benefit.

Secondly, over-emphasis of the farm system by some FSRE proponents can either preclude some potential development opportunities or reduce or even negate the benefit of some on farm activities by failing to consider off-farm interactions. The farm household system is undoubtedly much larger than merely the land area for which title is held. The northeastern farmer views surrounding forest or common land, roadside verges, water sources and off-farm employment opportunities as potential resources within his system.

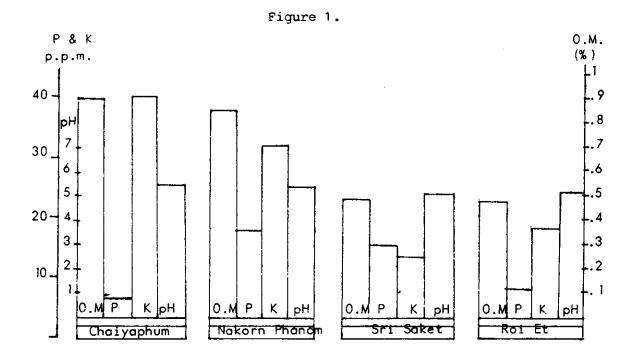
There are a number of key agro-ecological characteristics of Northeast Thailand that have important implications for FSRE programs in the region. Some consideration of how these implications are translated into strategic and tactical responses within NERAD's cropping systems component will be made here.

First, the subsistence rice crop is undoubtedly the key to cropping systems development in the Northeast. If improvements can be made to the rice crop, then constraints will be removed enabling farmers to diversify their cropping activities. Conversely, any cropping system technology which interferes with the subsistence rice crop is unlikely to be successful (Craig and Pisone, 1985). Most of the major advances in rice-based cropping systems development throughout the world have come through the introduction of new rice varieties. In most cases these have been short duration, non-photoperiod-sensitive varieties enabling planting of rice to be adjusted for timely planting of pre or post-rice crops (Dalrymple, 1971; Carangal, 1977). However, in rainfed environments such as the Northeast, the flexibility of photoperiod sensitive rice is essential to ensure a crop and thus this type of breakthrough is unlikely. NERAD's focus has been moving more towards component technology work on rice itself and exploring the potential for stabilizing and increasing rice yields by selective pre and post rice crops.

Secondly, it would appear that northeastern farmers are highly skilled and their traditional practices are already well tuned to local agro-ecological conditions (KKU, 1982, a). The implication here is that rapid, revolutionary breakthroughs in cropping systems development are unlikely. NERAD's approach has been more of attermpting to make small improvements to the farmers traditional practices in each locality based on the farmers' problems and taking account of the constraints facing them.

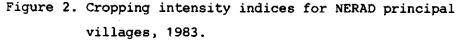
Many papers have stressed the extreme variability of agroecological and economic conditions overboth time and space in the Northeast (KKU, 1982, b). It is therefore unlikely that cropping systems can be developed which will give optimal returns every year or will be suitable for the entire region. Rather, the approach should attempt to identify for each specific location a series of low-risk, 'robust' technologies which give at least adequate returns all years. These technologies will have to be low-cost and purchased-input levels should be adjusted towards risk minimization rather than yield maximization.

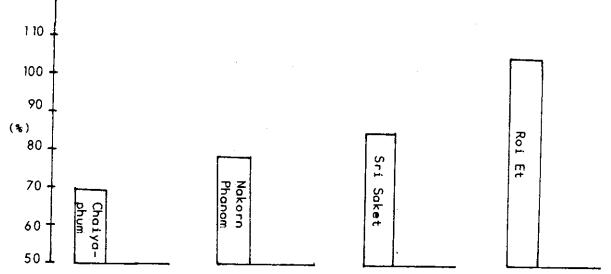
Finally, most of the cropping systems development work in the world to date has been in irrigated areas and has been synonymous with increasing cropping intensity (Andrews and Kassam, 1976; Anon., 1975; Dalrymple, 1971). There is always the danger, however, of over-emphasising cropping intensification as the major objective of this work especially in rainfed areas where the potential for more than one crop per year is often extremely limited. Previous papers have clearly shown that although there is a potential for multiple cropping in some


-258-

situations in the Northeast, many of the current problems facing the traditional monocrop systems are extremely serious and warrant higher research priority than cropping intensification. It is anticipated that NERAD's cropping systems work in the future will focus more towards tackling these problems than attempting to increase cropping intensity per se.

Farmer Strategies


It would appear that the majority of the traditional cropping systems in the Northeast are 'exploitive' in nature and the farmers' strategy is essentially one of mining the natural soil fertility built up when the land was under forest-cover (Ragland, et al, 1983). Purchased fertilizer in the rice crop is zero or minimal and the predominant upland systems of kenaf or cassava also generally reseive no fertilizer. A review of the soil fertility levels for 4 NERAD principal villages shown in Figure 1 gives some idea of how long this exploitation process has been going on in each Province.


Combined soils analysis data for NERAD Principal Villages, 1983

-259-

In Roi Et, where the land has been cultivated for the longest time and where soil fertility levels are the lowest, cropping intensity (Figure 2.) is surprisingly the highest of all villages. This is due to a locally evelved strategy for dealing with declining nutrient levels and decreasing rice yields. Farmers commonly plant watermelon after rice, not with the primary objective of earning cash but more as a means of "<u>stabilizing</u>" rice yields through the residual fertility from the manure and fertilizer applied to the water melon plots which are rotated between fields from year to year in order to spread the benefit over all the paddy land.

In Sri Saket where fertility levels have also declined markedly the strategy appears to be one of spending more money on fertilizer applied directly to the rice crop (Figure 3). This has probably been made possible by the higher proportion of the rice harvest which is sold thus generating cash to purchase the fertilizer (Figure 4).

-260-

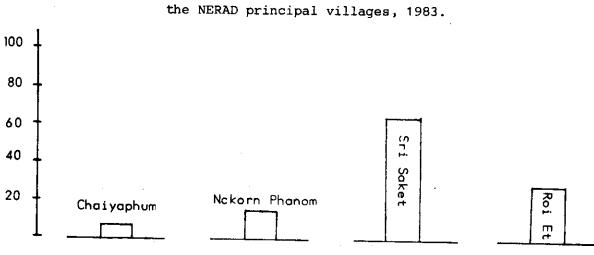
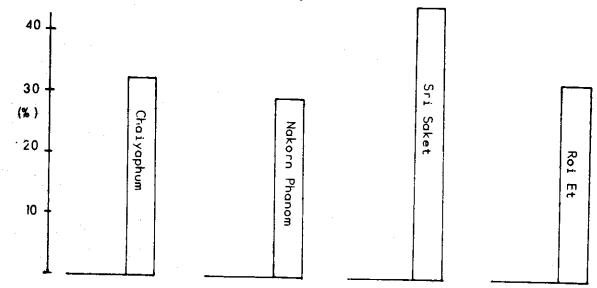
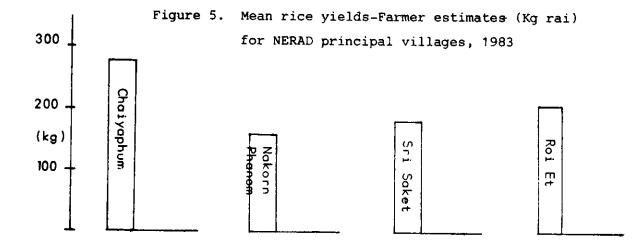




Figure 3. Money spent on fertilizer applied to rice for the NERAD principal villages, 1983.

Figure 4. Percent of rice harvest sold in the NERAD principal villages, 1983

In Chaiyaphum and Nakorn Phanom where the land has been cropped for a shorter period, soil nutrients have not yet declined to such low levels and farmers are following the strategy of "mining" soil nutrients with continuous low input mono-cropping. Figure 5 indicates that all 3 strategies produce apporximately equivalent rice yeilds. However, the dominant strategy in Chaiyaphum and Nakorn Phanom of mining natural fertility is not sustainable in the long term.

Farmers also have various strategies for dealing with the uncertainty of rainfall in the region. For rice these include: use of photo-sensitive rice varieties; small, bunded fields; ricestorage and by following what can best be termed "compensatory" cropping strategies. A good example of the latter also comes from Roi Et where farmers plant kenaf in the paddy before rice. In dry years the kenaf produces higher yields firstly because water-logging problems are reduced and secondly because the kenaf can be left in the field for longer as rice transplanting is either not possible or is at least delayed by lack of rain. Thus, there is some compensation for reduced rice yeilds in dry years by higher cash earnings from kenaf.

-262-

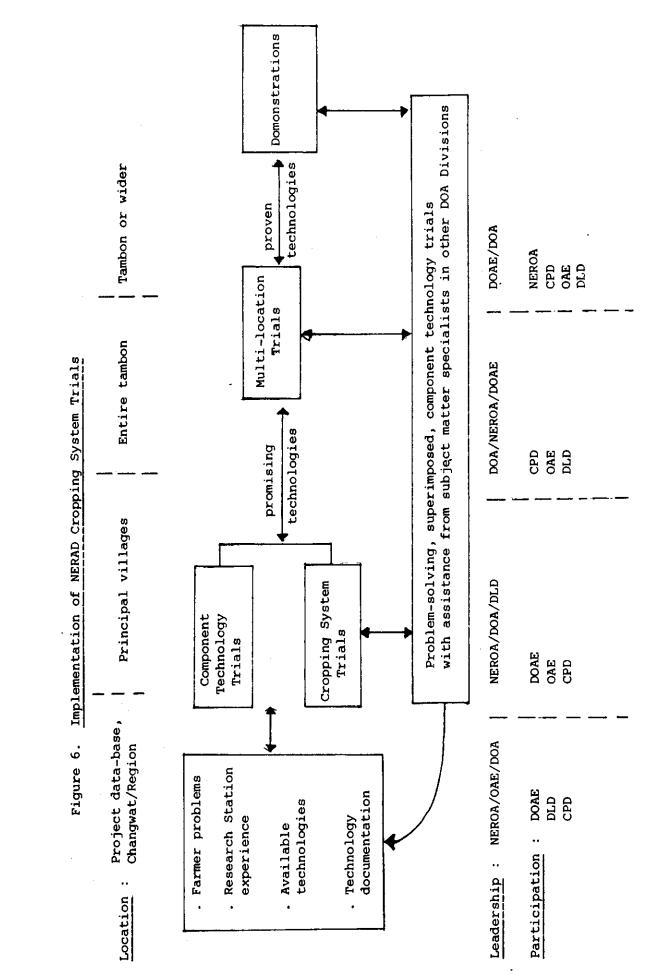
Results

NERAD has been running cropping system trials for 2 years in farmers fields in 9 tambons in 4 Changwats in Northeast Thailand. Two sets of trials have been conducted. Firstly, cropping intensification trials have been conducted over the entire tambon following DOA recommended practices for planting dates, fertilizer rates, etc. The second set of trials were conducted in only one principal village per tambon and were designed to solve current farmer problems identified during an interdisciplinary, needsassessment conducted in each village. A summary of the results of last year's trials are presented in Appendix 1.

Almost 100 trials, generally replicated over 5 farmers, were conducted with varying degrees of success. Available resources, however, were over-extended causing problems of inadeguate data on which to base decisions for improving the systems and a means of prioritising the trials in order to concentrate effort on the technologies with the highest potential for benefitting farmers in each tambon was needed.

To achieve this, a technical workshop was held to review the results of all the trials conducted and to classify the technologies into 3 categories:

- Successful technologies which are considered suitable for expansion through extension demonstrations.
- Promising technologies which still require further testing or modification by component technology research.
- Technologies which under present or expected future conditions are unlikely to significantly benefit farmers.


As a result of this "triage" process, technologies assigned to category 1 will be demonstrated in an extension phase by DOAE with technical support from DOA. Those trials classified as category 3 will be discontinued or passed back to the research stations but regularly reviewed to determine if technological advances or economic circumstances have changed sufficiently to warrant further testing. The project's cropping system trials program will concentrate on category 2 with an intensive series of on-farm trials including superimposed, component technology work to solve the remaining problems and develop the systems until they are ready for the extension phase. The overall cropping systems strategy will be implemented according to the system summarised in Figure 6.

Instead of reviewing the results of all the trials, some examples will be chosen to illustrate the triage process, to demonstrate the importance of understanding traditional cropping strategies and to assess the potential for cropping systems development in the Northeast. These examples are presented in Tables 2-4.

A green manure trial was implemented in Sri Saket to address the problems of low soil fertility and the high cost and associated risk of applying fertilizer to rice. Both the objectives of increasing rice yield and reducing fertilizer requirements were met by the trial. Although yield increases were only moderate, the farmers' response was extremely enthusiastic and the technology is already being rapidly adopted in the area. It is believed that the reason for this is that it satisfies the farmers' rice yield stabilization objective but does so in a low-cost, low-risk manner. Cuban kenaf before rice is also considered ready for extension for similar reasons as an improved compensatory system for fluctuating rice production. At present prices, the 747 Baht net returns from kenaf represents over 350 kg rice per rai which is an acceptable yield level.

Yield and returns from the direct-sown rice and the sesame before rice technologies were rather variable and well below potential. However, they represent viable compensatory and income stabilization strategies respectively with considerable potential for meeting these objectives in their respective areas. For this reason

-264-

2

Table 2. Ecamples of successful technologies to be moved to the extension phase

1. COWPEA (green	manure) - RICE	Sri Saket
FARMER PROBLEMS IDENTIFIED	 Low soil fertility High cost and risk of Pre-rice season undere 	fertilizing rice
OBJECTIVES OF THE TRIAL	1. Increase rice yields 2. Reduce fertilizer requ	irements in rice
RESULTS (mean of 15	Cowpea-Rice 15-15-15 20kg (DM105) 16-20-0 rai	/+NH ₄ SO ₄ YIELD=543kg/rai 10kg/rai
plots)	Fallow-Rice 15-15-15 20kg (DM105) 16-20-0 rai	/+NH ₄ SO ₄ YIELD=487kg/rai 10kg/rai
	Fallow-Rice+44kg(mean)fer (local)	tilizer YIELD=444kg/rai
	- Yields are	significantly differen
CONCLUSION	LOW-INPUT, LOW-RISK 'STAB	ILIZATION' STRATEGY
2. CUBAN KENAF - 1	RICE	Chaiyaphum
FARMER PROBLEMS IDENTIFIED	 Unstable rice yields Root rot disease build area where kenaf is cor 	up on limited upland atinuously monocropped.
DBJECTIVES OF THE TRIAL	 Identify a pre-rice cas land. Test a root-rot resista 	
RESULTS mean of 5 plots)	Cuban Kenaf yield=280kg/ra Upland Thai Kenaf (control Rice after Cuban Kenaf = 4)=207 kg/rai
ONCLUSION	INPROVED COMPENSATORY SYST	FM

.

-266-

they will receive high priority for further on-farm component technology trials to overcome the remaining problems. For direct sown rice this will include planting methods to obtain better plant spacing to facilitate weeding, herbicide trials and planting date trials. For sesame the component technology work will concentrate on planting date trials in an attempt to avoid water-logging and drought.

Although net returns from sweet-corn before rice were acceptable, this trial was based on the erroneous assumption that farmers wish to increase cropping intensity on their paddy land. Farmers in Nakorn Phanom, however, have plenty of underutilized upland area which they prefer to use for cash cropping where it does not interfere with their subsistence rice production. The objectives of the mungbean-before-rice trial are considered to be valid and in line with farmers' objectives but currently the available mungbean varieties are not suitable for local conditions due to their preference for clay soils, sensitivity to water-logging and their susceptibility to common pests and diseases. It is therefore considered that more on-station breeding work is necessary before further on-farm trials of this technology are considered.

-267-

Table 3. Examples of promising technologies for intensive on farm testing and component technology trials

1. DIRECT SOWN	RICE (U	PPER PADDY)	Chaiyaphum
FARMER PROBLEMS	•	Unstable subsistence Upper paddies planted	rice production. only 1 year in 3
OBJECTIVES OF THE TRIAL		year Identify situations w	here D.S. rice will
(mean or 5 I	Net ret C.P. Ri	urns = 127 Baht/rai ce (control) YIELD=0kg/	
CONCLUSION	CO	MPENSATORY STRATEGY FOR	R DRY YEARS
2. SESAME-RICE		ج	Roi Et, Sri Saket
FARMER PROBLEMS IDENTIFIED	1.	Limited market and uus present cash crops(wat long bean).	table prices for er melon and yard
OBJECTIVES OF THE TRIAL		technolcgy successful situation with similar conditions. Identify a viable pre-	elsewhere in a agro-ecological
FARMER PROBLEMS 1. Unstable subsistence rice production. IDENTIFIED 2. Upper paddies planted only 1 year in 3 OBJECTIVES OF 1. Produce rice in the upper paddies every year 2. Identify situations where D.S. rice will give higher or more stable yields than T.P. rice. RESULTS D.S. Rice(RD6)YIELD=154Kg/rai(Rat+weed problems) (mean of 5 Net returns = 127 Baht/rai slots) T.P. Rice (control) YIELD=0kg/rai (Insufficient water for transplanting) CONCLUSION CCMPENSATORY STRATEGY FOR DRY YEARS PARMER PROBLEMS 1. Limited market and uustable prices for present cash crops(water melon and yard long bean). BJECTIVES OF 1. Test the potential of a traditional technology successful elsewhere in a situation with similar agro-ecological conditions. 2. Identify a viable prices. 2. Identify a viable prices. ESULTS Sesame YIELD = 90 kg/rai(intermittent water loggi drought) Net cash returns = 747 Baht/rai Rice YIELD - Unaffected by sesame		ht) i	
CONCLUSION	PRO	MISING INCOME STABILIZ	ATION STRATEGY

-268-

Table 4. Examples of technologies unlikely to significantly benefit farmers

1. SWEET CORN - RICE Nakorn Phanom FARMER PROBLEMS 1. Underutilization of paddy land. IDENTIFIED OBJECTIVES OF 1. Increase cropping intensity in the paddy THE TRIAL RESULTS Corn YIELD = 2924 saleable ears per rai (mean of 13 Net returns = 476 Baht per rai plots) Rice YIELD - no detectable effect of sweet corn on yield CONCLUSION TRIAL OBJECTIVES DO NOT FIT FARMER'S STRATEGY 2. MUNGBEAN - RICE Roi Et - وي بين مياديد دار بين خلا حلامته بنا علا نين الله حلامته العدي الله الله الله الله الله _ _ _ _ _ _ _ _ FARMER PROBLEMS 1. Declining scil fertility 2. Limited markets and unstable prices for IDENTIFIED traditional cash crop (water melon) OBJECTIVES OF 1. Improve soil condition by incorporation THE TRIAL of legume crop residues 2. Stabilize returns from cash crops ور بر ما به ما ما ما ما ما ما ما ما ما ها ها ها ها من ما بوجن مرجز من ما ما ما ما بالما بالما ما ما ما ما ما م RESULTS Mungbean yield = 44 kg per rai Net returns = 88 Baht per rai Rice(yield = 348 kg per rai)not signifi-(mean of 5 plots) Rice(control) = 344 kg per rai)cantly different CCNCLUSION STABILIZATION OBJECTIVES NOT ACHIEVED IN TRIALS

References

- Andrews, D.J. and Kassam, A.H., 1976. The Importance of Multiple Cropping in Increasing World Food Supplies. American Society of Agronomy Special Publication Number 27, Multiple Cropping. p 1-10.
- 2. Anonymous, 1975. Multiple Cropping in Asian Development. The Philippine Economic Journal, XIV, (1-2). 322 pp.
- 3. Carangal, V.R., 1977. Asean Cropping Systems Network. Proceeding of a Synposium on 'Cropping Systems Research and Development for the Asean Rice Farmer.' IRRI, Philippines. p 31-46.
- 4. Craig, I.A. and Fisone, Utai (1985) Overview cf rainfed agriculture in Northeast Thailand. Proceedings of a Workshop on 'Soil, Water and Crop Management Systems for Rainfed Agriculture in Northeast Thailand'. Khon Kaen University, February 25-March 1, 1985.
- 5. Dalrymple, D.G. 1971. Survey of Multiple Cropping in less Developed Nations. USAID/USEA, FEDR-12, 108 pp.
- KKU, 1982 (a). An Agro-ecosystem Analysis of Northeast Thailand.
 KKU-Ford Cropping Systems Project, Faculty of Agriculture, Khon Kaen University, Thailand. 167 pp.
- KKU, 1982 (b). Tambon and Village Agricultural Systems in Northeast Thailand. KKU-Ford Cropping Systems Project, Faculty of Agriculture, Khon Kaen University, Thailand. 174 pp.
- Mitsuchi, M., 1984. Note on the Soils of Northeast Thailand. Agricultural Development Research Project in Northeast Thailand, Report of the JICA Expert Team. p 12.
- Panothai, Aran, 1984. Issues concerning the Development of a Farming Systems Research Approach. Proceedings of the 1st National Farming Systems, Conference. Surat Thani, 2-5 April, 1984, Thailand. (In Thai) 34 pp.
- Ragland, J.L., Craig, I.A. and Infanger, C. 5th Quarterly Report. NERAD Project. Northeast Regional Office of Agriculture, Khon Kaen, Thailand. p 14-25.

APPENDIX I.

.

'n

÷

-272-

NERAD CROPPING SYSTEM AND COMPONENT TECHNOLOGY TRIALS

RESULTS SUMMARY

Changwat : Chaiyaphum Tambon : Kwang Jon/That Thong Year : 1984

Land	System	YIELD(kg/rai)				ROL PL		_	ELLING CE ()#/		(exclu	PUT CC ding 1 \$/rai)	abour)		NET RETURNS (Ø/rai	
Туре		nean	min	max	mean	min	max	mean	min	max	mean	min	max	mean	min	тах
Lower paddy	Mungbean ^{1/} T.P. Rice	-	0	75 480	- 375	- 367	- 382	10 2.02	10	10	233 168	233	233 168	-	-	511
Upper paddy	Munghean D.S. Rice	52 154	22 60	83 247	-	-	- 0	10 2.02	10	10	248	248 168	248	272 127	-28 -48	582 294
"pland	Mungbean(1983) Kenaf (Disease break rotation)	154	70	238	175	145	204	9.8	9.0	10.6	231	208	25 3	1163	422	1404
ţ, t and	Thai kenaf Feanut	116 192	94 93	1 38 292	207	205	210	8.5 6.5	8 6.0	9 7.0	200 407	193 390	208 425	804 690	560 53	104°
Upper paddy	Cuban kenaf ^{1/} Rice (RD6) ^{2/}	285 210	158 -	469 -	207 173	205	210	8.5 2	5.8 -	10.3	2 3 0 183	208 -	252 -	2498 237	1028	3969
	Thai kenaf Red Sorghum	1 75	133 Я	235 A R V	- Е 5 Т	- DAT	- A N	9.7 от у		10.3 A V A	236 I L A	- 8 L F.	-	1437	900	199(
Upland	Peanut Red Sorghum	512	- н	- A R V	EST	- -	- A N	5 0 T Y	- E T	- A V A	652 I L A	- B L E	-	1908	-	-
Upper paddy	White sesame Rice	86	- 1	- N 5 U	- FFI	- C I E	- N T	25 W A T	- E R	- FOR	292 T R	- ANS	- PLA	1846 N T I	- NG	-

; 1/ DOA and RAT results combined

2/ Rice could not be transplanted due to lack of water. Results are for 1 plot which was direct sown.

-273-

NERAD CROPPING SYSTEM AND COMPONENT TECHNOLOGY TRIALS

RESULTS SUMMARY

Changwat : Chaiyaphum Tanbon : Lahan Year : 1984

Land	System	YIE	LD (kg/	rai)	ł	ROL PL			ELLING		(exclu	PUT CC ding 1 B/rai)	labour)		NET RETURNS (Ø/rai)	
Туре		mean	min	тах	mean	min	max	mean	min	max	mean	min	max	mean	min	max
	Cubankenaf Rice (N.G.)	276	217 360	328 465				8.2	6.3 2.5	7.2	246	246	246	1593 690	1529 605	1804
	Mungbean ¹⁷	-	0	23				6	-	-	282	344	- 344		-282	819 - 98
	Rice	-	-	580				2.5	-	-	344	-	-	_	-	1106
·	Mungbean ^{2/}	75	Û	208				8.5	8	.9	425	285	565	329	-ve	1467
	Rice (RD 15)	667	310	1025	460	300	620	2.3	2	2.6	525	350	700	1288	431	27.45
ę.	Rice 'RD 7) ^{3/} Cucumber or	1325	-	-	490	-	-	2.3	-	-	565	-	-	2880	-	-
PADDY LAND	Broccolli or				NO	T T	ET	HAR	VES	тер						
d.	Tomatoes or Onions															Ē
-	Peanuts	365	280	480				5	5	5	652	652	652	1773	748	1748
	Red Sorghum	_			NO	Ť Y	ET	HAR	VES	ΤED	1 					
	Mungbean				ALL	3 PLO	TS FA	ired -	PLOUG	ED IN						
	Cucumber	570	520	610				1	1	1	472			98	48	138
	Peanut.	122	116	128				5	5	5	222	272	222	388	358	418
	intercropped with Cassava	1980	1860	2100				0.6	0.6	0.6	300	300	300	888	816	960

.

1/ tambon trials

*

2

;

2/ Principal village trials

3/ Only 1 trial plot implemented

-274-

NERAD CROPPING SYSTEM AND COMPONENT TECHNOLOGY TRIALS

RESULTS SUMMARY

Changwat : Nakorn Phanom Tambon : Na Ngua Year : 1984

Gand Type	System	YIELD(kg/rai)			1.	ROL PL			ELLING		(exclu	PUT CO ding 1 Ø/rai)	abour)		NET RETURNS (#/rai	
		mean	min	max	mean	min	max	mean	min	max	mean	min	max	nean	min	max
	Sesame	126	102	150					:							
	Watermelon	3213	450	5103					 	ļ. <u> </u>						
UPLAND	Peanut. Watermelon	50 3331	31 585	93 5590												
	Thai kenaf Watermelon	177 2742	63 1175	283 5455						-						
LAND	Sweetcorn peanut	900 142	310 56	1423 288												
	Sweetcorn Rice	595 245	448 228	742 262												
PADDY LAND	Cowpea Rice	8 337	0 247	21 430												

NERAD CROPPING SYSTEM AND COMPONENT TECHNOLOGY TRIALS

RESULTS SUMMARY

Changwat : Nakorn Phanom Tambon : Na Thom Year : 1984

Land Type	System	YIE	LD (kg/	rai)		'ROL Pi		ì	ELLING		(exclu	PUT Co ding #/rai	labour		NET RETURNS (Ø/rai)	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		mean	min	max	mean	min	max	mean	min	188X	mean	min	max	mean	min	max
	Sweetcorn Peanut	547 108	493 97	626 123												
UPLAND	Sesame Peanut	6 133	3 100	12 167												
	Jute Watermelon	347 2255	300 450	377 3870										-		
	Cassava intercrop Peanut	4101 0	8009 0	4662 0				PEAN	UT FAI	LED						6 .
	Sweetcorn Rice	75 104	0 88	220 142								******				
PADDY	Cowpea Rice	3 66	0 60	9 72												
	Rice Ningbean	71 UNAB	57 Le 70	85 PLAN	T.											
	 						<u> </u>					Ĺ				

-

1

NERAD CROPPING SYSTEM AND COMPONENT TECHNOLOGY TRIALS

RESULTS SUMMARY

Changwat : Sri Saket Tambon : Taket Year : 1984

Land Type	System	YIE	:LD (ikg/	rai)	1.	ROL PL			ELLING		(exclu	PUT CC ding l B/rai)	abour		NET RETURN (Ø/rai	
		mean	min	max	mean	min	max	mean	min	max	mean	min	max	mean	min	max
	Mungbean Rice	29 436	21 351	41 555				9 2.8	9 2.0	9 2.8	476 396	476	476	-216 656	-288	-112 916
	Peanut Rice	105 344	20 284	160 593				7 -	7 2.8	7 2.8	892 398	892	892	-616 868	-753 342	227 1127
PADOY	Yard bean Rice	470 434	330 404	660 485				5	5 2.8	, 5 2,8	1200 398	1209	1200	1150 799	450 733	2100 900
	Cowpea Rice	0 470	0 416	0 553				- 2,8	- 2.8	- 2.8	148 398	148	148	NEGA 967	71UE 816	1199
EK	Sesame Rice	13 507	7 470	20 583				14 2.8	14 2.8	14 2.8	470 398	470	470	-283 1021	-377 881	-190 1234
LOWER	Baby corn Rice	116 442	77 361	160 496				3 2.8	3 2.8	3	1075 398	1075	1075	-728 763	- 845 611	-595 919
	Cowpea G.H. Rice	PL 543	oughed 425	IN A 864	8 GREE 487 ^{1/} 444 ^{2/}	N MANU 368 ^{1/} 347 ^{2/}	6191/	- 2.8	- 2.8	- 2.8	0 ^{3/}	-	-	157	-	-

1/ Chemical fertilizer only

2/ Parmer practices

÷

3/ Seed the only input produced by farmers themselves

-276-

NERAD CROPPING SYSTEM AND COMPONENT TECHNOLOGY TRIALS

-277-

RESULTS SUMMARY

Changwat : Sri Saket Tambon : Tae Year : 1984

Land	System	YIE	YIELD(kg/rai)			ROL PL D (kg/			ELLING		(exclu	PUT CO ding l Ø/rai)	abour)		NET RETURNS (B/rai)	-
Туре		mean	min	max	mean	min	max	nean	min	max	mean	min	max	mean	min	max
	Mungbean	66	37	100				9			476			197	27	423
	Rice	460	361	575				2.8		ļ	398			291	613	1212
	Peanut	145	130	1 70				7			892			122	17	297
	Rice	528	426	621				2.8			398			1031	794	1343
	Yardbean	717	600	800				5		•	1200			2382	1800	2800
	Rice	604	547	658				2.8			398			1027	573	1444
	Covpea	1089	\$00	1933				[148					
	Rice	541	414	693				2.8			398			1117	760	1542
	Sesame	32	30	33				14			470			-15	-12	4
	Rice	512	574	599				2.8			398			1035	680	1279
	Baby corn	65	53	87				3			1075			-880	-815	-915
	Rice	558	508	610		ļ		2.8			308			1163	1024	1309

-

.

-278-

NERAD CROPPING SYSTEM AND COMPONENT TECHNOLOGY TRIALS

RESULTS SUMMARY

Changwat : Roi Et Tambon : Nong Kaew Year : 1984

Land Type	System	YIE	LD(kg/	rai)		ROL PL	-		ELLING		(exc)	IPUT C ding ₿/rai	labour		NET RETURN (Ø/rai	
		mean	min	max	mean	min	max	mean	min	max	mean	min	max	nean	min	Indix
	Nungbean Rice	48 336	24 292	69 376	- 319	- 269	- 369	10 1.5	10 2.0	10 2.7	344 178	344 178	.344 178	+26 654	-104 415	
~	Kenaf (Thai) Rice	437 254	263 173	530 278	397 ¹⁷ 319	290 ^{1 /} 269	530 ^{1/} 369	8.5 2.4	8.5 2.3	8.5 2.7	218 178	218 178	21B 178	3500 441	2014	4284 584
LUMER PADOY	Cuban Kenaf Rice	397 256	290 158	530 348	437 ^{2/} 319	263 ^{2/} 269	530 ^{2/} 369	8.5 2.5	8.5 2.5	8.5 2.5	218 178	218 178	218	3159 451	2248	4287 627
L U	Cowpea (G.M.) Kenaf Rice	410	KEN 410	AF 410	326 ⁴ /	NOT	-	SUBS PLAN 2.0	ISTENC TED	F USE	2B	•		792		
	White Sesame Rice Peanuts	- 253	0 1 44	44 331	436 ⁵⁷ 72 274	66 ^{3/} 272	78 ^{3/} 276	15 2.7	15 2.7	15 2.7	428 178	428 178	428 178	605	-429 212	22? 715
	Black Semame Rice Peanuts	72 257	66 198	78 308	- 274	- 272	- 276	12 2.7	12 2.7	12 2.7	447 178	447 178	447 178	413 515	343 356	484 655
UPPER PADDY	Thai Kenaf Rice Peanut	309 258	1 76 1 99	429 317	224 ^{1/} 274	81 ^{1/} 272	307 ^{1/} 276	8.5 2.7	- 2.7	- 2.7	218 178	218 178	218 178	2407. 519	1279 359	3426 679
	Cuban Kenaf Rice Peanut	224 242	81 166	307 318	309 ^{2/} 274	1 76 ^{2/} 272	429 ^{2/} 276	0.5 2.7	- 2.7	- 2.7	218 178	218 178	218 178	1686 477	467 272	2395 682

17 Cuhan Kenaf yields taken as control

Thai kenaf yields taken as control
 Black mesame taken as control

.

4/ Fallow-rice control plot

57 Watermelon-rice control plot

-279-

NERAD CROPPING SYSTEM AND COMPONENT TECHNOLOGY TRIALS

RESULTS SUMMARY

Changwat : Roi Et Tambon : Na Muang Year : 1984

Land Type	System	YIELD(kg/rai)			1	ROL PL			CE ()		[exclu	DUT CO ding 1 #/rai	abour		NET RETURN: (#/rai	
		inean	min	max	mean	min	max	мөап	min	max	mean	min	max	mean	min	max
	Минарелл	40	18	67	1			10	10	10	344	344	344	51	-168	322
	Rice	359	283	498	369	266	486	2.3	2.0	2.5	178	1 78	178	648	527	819
FADDY	Thai Kenaf	444	283	638	358 ¹	1911	6121	8.5	8.5	8.5	218	210	218	3555	2188	5201
4	Rico	342	270	433	369	266	486	2.3	2.2	2.3	178	178	178	606	445	788
LOWER	Cuban Kenaf	358	191	612	4442		t i		8.5	8.5	218	218	218	2878	1406	4980
	Rice	355	243	419	369	266	486	2.4	2.3	2.6	178	1 78	178	637	461	814
	White Sesame	102	85	112	1413	1203	1483	15	15	15	428	428	42B	1101	830	1248
	Rice Peanut	330	252	559	307	227	430	2.3	2.0	2.7	178	178	178	590	327	1331
	Black Sesame	141	120	148	1024	854	1124	15	15	15	447	447	447	1245	993	1330
λα	Rice Peanut	362	205	509	307	227	430	2.2	2.0	2.7	1 78	178	1 78	63 6	233	1198
γασργ	Thai Kenaf	385	264	574	308 ¹	212 ^{1,}	458 ¹	8.5	8.5	8.5	218	218	218	3052	2027	4662
ıзррЕл	Rice .Peanut	316	156	500	307	227	430	2.7	2.4	2.8	178	178	178	581	261	1174
	Cuban Kenaf	308	212	458	385 ^{2,}	264 ^{2/}	574 ^{2/}	8.5	8.5	8.5	218	218	218	2398	1585	3676
	Rice Peanut	368	188	610	307	227	430	2.4	2.0	2.7	178	178	178	700	199	1468

1/ Cuban kenaf yields taken as control

2/ Thai kenaf yields taken as control

*

3/ Black sesame yields taken as control

4/ White sesame yields taken as control

-

.